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In this article, we consider the dynamics of transition waves in phase-transforming metamaterials with
hierarchical architecture, i.e., 1D/2D periodic systems comprising a network of intersecting chains of
elastically-coupled bi-stable elements. To this end, we develop continuum models of discrete 1D systems
that, nevertheless, also elucidate the transition wave dynamics in 2D environments, which have received little
attention in the literature. We find the potential driving and the wavelength relative to the hierarchical

dimensions to play important roles in determining the wave mobility.

The unique construction provokes

some interesting results, including the growth of non-circular domains and the stabilization of domains of
arbitrarily prescribed morphology; the latter representing an avenue toward reconfigurable performance via
domain patterning. Altogether, in a break from the paradigm of homogeneity, the results not only elucidate
the influence of hierarchy on the dynamics of phase-transforming metamaterials, but also its potential utility.

I. INTRODUCTION

Phase transformations™ are a hallmark of materials

whose microstructure possesses more than one stable
equilibrium configuration (i.e., phase, state) as
distinguished by a set of order parameters. In lowering
the free energy of a sample, regions of homogeneous
configuration (i.e., domains) emerge, separated by
an interface (i.e., domain wall) that interpolates the
adjoining phases and, in propagating, constitutes a
transition wave. The physical properties can vary
drastically between domains of different phase and even
within the domain walls, a quality exploited for a variety
of applications®®. Yet, transformation phenomena are
not limited to natural materials systems and to the
molecular scale; rather, phase-transforming mechanical
metamaterials comprising arrays of coupled, multi-stable
structural elements have been shown to not only mimic
material-level processes at the structural level, but also
serve as versatile platforms within which to engineer
novel transformation characteristics?.

Prior investigation of phase-transforming
metamaterials has revealed the peculiarities of
domain wall motion within a variety of architectures,
including those characterized by different substrates,
spatio(-temporal) gradients, and hard defects® 3. These
efforts elucidate the fundamental role of structure
in shaping the observed transformation performance
and provide a scholarly foundation upon which to
develop design strategies toward the functionalization
of transformation phenomena? 42l However, prior
examples of phase-transforming metamaterials exhibit
only a single level of structure; yet, in the broader
metamaterial literature, structural hierarchy?? is already
an intensely investigated and utilized characteristic of the
architecture?*2”, In the context of phase-transforming
metamaterials, structural hierarchy not only represents
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a means to expand the current design space within which
to engineer the transformation performance, but also
the opportunity to elicit new transformation behavior.

In the following, we consider the dynamics of
transition waves in phase-transforming metamaterials
with hierarchical architecture, i.e., 1D/2D periodic
systems comprising a network of intersecting chains
of elastically-coupled bi-stable elements. Within
these systems, wave propagation becomes inherently
inhomogeneous: the hierarchical structure functioning as
soft material defects. The nature of the wave-structure
interaction depends on the free energy wave driving
and the wavelength relative to the hierarchical structure
dimensions, affecting the propagation velocity. Unlike
their homogeneous counterparts, in 2D hierarchical
systems, a nucleus of the low-energy phase can grown
into a domain with unusual, non-circular morphology
or a prescribed domain pattern can be stabilized.
Together, these results demonstrate the ability of
hierarchical structure to influence the dynamics of
phase-transforming metamaterials and to represent an
additional design degree of freedom for applications.
Applying both theoretical and numerical tools, we
systematically study domain wall motion in and the
characteristic domain morphology of representative
1D /2D hierarchical lattices.

Il. 1D HIERARCHICAL METAMATERIAL
A. Model

Figure displays the schematic of a 1D
hierarchical metamaterial which serves as our point
of departure, comprising a main conduit and its
periodically-distributed offshoots. Each consists of
bi-stable elements ascribed a single degree of freedom,
u;; (e.g., rotation, out-of-plane displacement), and
coupled elastically to the nearest-neighbors. The
elements are separated by a spacing, a, the fundamental
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FIG. 1. Hierarchical, Phase-transforming Metamaterial.

(a) Schematic of a 1D periodic hierarchical system.

Position, x

(b) On-site

non-convex potential characterized by two stable states, usi and us2, and granting (ii) the formation and propagation of an
anti-kink transition wave. The wave profile as determined numerically and analytically, respectively, from the homogeneous
discrete model [Eq. (I)] and its continuum approximation [Eq. (3)].

spatial unit that also characterizes the offshoot length
and periodicity, ¢ = pa and D = qa, p,q € N,
respectively. ~ We characterize the metamaterial as
hierarchical due to the presence of multiple, potentially
well-separated length scales: a, ¢, and D. The
corresponding non-dimensional discrete  governing
equations with on-site viscosity, 7, are given by [SI]

7

0+ Ntio + (2ui0 — wit1,0 — Ui—1,0) + ¥ (ui0)

+ Z (2uro —ury —ur,—1)6r; =0, (la)
T

Gg g+ iy g+ (2ur; — urj41 — ur-1)
+ ' (urj) =0, 1 <|j] < ¢, (1b)

where dp; is the Kronecker delta and I = {i|i/D € Z}
collects the indices of junctions (i.e., elements in the main
conduit to which the offshoots connect). Bi-stability
stems from the on-site potential, ¥ (u;,), with local
minima at u; ; = us1 and u; ; = ugz, corresponding to the
initial and final stable equilibrium phases, respectively;
the local maxima at u; ; = ugo is an unstable equilibrium.
For analytical convenience, we utilize a modified *
potential function:

P = ko — 12+ D12 (@)

where stiffnesses, ko and ki, regulate the function
asymmetry driving transition wave motion. To
characterize the local energy landscape, we introduce

the parameter 5 = A¢12/A1/1027 where Ad)” = ’l/)(usz) —
Y(us;). Thus, for 0 < € < 1, ¢(u,;) is asymmetric with
ug1 and wusg, respectively, the meta-stable and ground
states.

The offshoots may be reguarded as soft defects having
a purturbative affect on transisiton wave motion within
an otherwise homogeneous system. Thus, in addition
to numerical analyses of the discrete source model [Eq.
(1)], we also utilize the collective coordinate method
in a semi-analytical approach to study the purturbed
transition wave dynamics. To this end, we define
an ansatz in the collective coordinates based on the
transition wave solution of the continuum approximation
of the homogeneous discrete system [SI]:

Us2 + Us1

u(z) = 5
Us2 — Us1

— 5 tanh
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where z = (2 — vot)(1 —v2)~ 2 is a reduced variable with
vy the steady-state velocity,

vy — 2k0(u52 + usy — 2”30)2
0 n% + 2ko(us2 + us1 — 2ug0)?

(4)

For a given set of parameters, Fig. [Ip.ii compares
the numerical [Eq. (I)] and analytical [Eq. (3] wave
profiles where good agreement is observed, suggesting
that results precipitating from the collective coordinate



approach with Eq. can be relevant to the discrete
system. Here and in the following, we set n = 3/5 and
ko = 1/10 while k; varies in order to manipulate . In
Fig. [Ip.ii, k1 = 4/50 yields £ = 0.941.

In the following, we find the wavelength, A to be a
relevant parameter. We approximate A as the span of
the continuum solution centered at z = zy accounting for
95% of the total kinetic energy of the propagating wave.
This criterion leads to the formulation [SI]:

_ 5.3v/1 — v(z)
A= (us2 — us1)v/2ko (5)

B. Analysis

Before analyzing the 1D system with
periodically-distributed offshoots as depicted in Fig. [Th,
it is worth considering the effect of isolated offshoots
(identically, D — o) on the domain wall motion. This
choice simplifies the initial presentation of concepts
and analytical procedures that extend to the more
complicated systems to come. To this end, we excite
a right-propagating transition wave in the discrete
model with & = 0.941 (A = 5.87) and, after attaining
a steady-state velocity, observe its interaction with
an isolated offshoot pair. Figure offers a snapshot
of the kinetic energy distribution in the vicinity of
the junction when the propagation velocity is at a
minimum. For ¢ < A, the kinetic energy appears equally
divided among the elements comprising the junction
and offshoots as if their motion is that of a single
unit; conversely, for ¢ > A, the kinetic energy appears
equally divided among the offshoots and conduit region
beyond the junction as if the system is triplicated at
the junction. From these observations, we formulate
phenomenological descriptions of wave propagation
within the main conduit, focusing on two limiting cases:
(i) the short-offshoot condition (¢ < A) and (ii) the
long-offshoot condition (£ > ).

For ¢ < )\, we formulate a continuous governing
equation that treats elements in the junction and
offshoots collectively as a single, substitutional defect
element with the summed local properties:

(14 nld(z)][t 4+ ni+ ¢ (w)] — u gz = 0, (6)

where §(x) denotes the Dirac-d function and n is the
number of offshoots per junction (presently, n = 2). For
¢ > X, the two offshoots and the portion of the conduit
beyond the junction respond identically, implying a force
balance at the junction of the form u 4 |,—o- = 3u z|,—o+
as if the junction was the interface between two different
media. This inspires the governing equation:

[+ nH ()][i+ni+¢" (u)] = (L+nH (@)]uz) .. =0, (7)

where H(z) is the Heaviside function.

To analyze transition wave motion governed by the
Egs. (@) and @, we follow a collective coordinate
approachi®® using an ansatz base on Eq. (3)):
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where X(t) and A(t) are the collective coordinates
representing the transition wave position and shape,
respectively. This leads to the governing equations in
the collective coordinates [SI]:

u(z,t) =
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where q = [X A]T. The total Lagrangian, £, and
generalized forces, Qx and Q 4, are specific to the short-
and long-offshoot models, Eqs. (6)) and (7)) [ST].
Equation (9] is the reduced order model (ROM) of Egs.
@ and 7 which are phenomenological descriptions of
transition wave interaction with isolated offshoots in the
discrete source model [Eq. (I)]. For validation, in Fig.
we compare the numerical results produced by the ROMs
to that of the source model. We numerically integrate
the ROMs from initial conditions, qo = [-2A,(1 —
v2)"2] and qo = [vo,0], representing a transition wave
approaching the junction from the left at steady-state
velocity. We calculate the mean velocity, vy, in the
region x € [—2\, 2A] about the junction. As evidenced by
the decrease in vy, /vy with increasing ¢ displayed in Fig.
[2b, the energy cost to the wave traversing the junction
increases as £/ — 1. As a transition wave traverses
a junction, it stimulates a duplicate wave in each of the
offshoots; however, the duplicates cannot fully form until
¢ = [X]. As { increases, more of the transition wave
energy goes to creating the duplicates, decreasing v, /vo;
the energy and vy, /vg stabilize once £ is sufficient for the
duplicates to fully form. For ¢ > 4, the wave driven
by £ = 0.885 (A = 5.98) can no longer overcome the
energy barrier established by the offshoots and, therefore,
is immobilized (i.e., pinned) at the junction. Conversely,
for £ = 0.941 (A = 5.87), wave propagation persists for
all ¢; however, vy, /vp rapidly converges to a constant.
Apparently, v, depends on both & and ¢/X. Good
agreement is observed between the numerical results from
Eq. and from the ROMs: the variation in vy, /vg
generated by the source model is well-approximated by
the short-offshoot ROM (solid line) while ¢ < A; by the
long-offshoot ROM (dashed line) while £ > A.
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FIG. 2. Propagation in 1D System with Isolated Offshoots. (a) The kinetic energy distribution in the vicinity of the offshoot
pair as the transition wave traverses the junction. (i) Elements comprising short offshoots move in tandem with the junction; (ii)
new, out-going fronts are identically stimulated in long offshoots and the conduit region beyond the junction. (b) Comparison
of the numerical results for the (¢, {)-dependent vm /v from the source model and the ROMs. (c¢) Mapping £ and £/ to the
vm. The critical potential difference, &, as predicted by the ROMs for the transition wave to successfully traverse the junction

(i.e., not become immobilized).

Figure plots vy, (4,€) as determined from the
simulation of Eq. , showing a clear bifurcation: if £ is
less than a critical value, &., then the transition wave is
pinned at the junction. The behavior can be anticipated
from the time-independent solutions of Egs. @ and ,
respectively:

(14 nld(z)]Y' (u) — u gy = 0,
(14 nH )] () — (L4 nH@)]u) . = 0.

(10a)
(10Db)

While Eq. (10a) requires a root-finding algorithm to
determine &., the same can be determined analytically
via Eq. (10b), giving & < [(n+1)2 —1]/(n + 1)? [S]]
(presently, n = 2 yields £ = 8/9). Apparently, these
solutions plotted in Fig. show excellent agreement
with the simulation results.

For the case of the periodic hierarchical structure
depicted in Fig. [Th, in addition to the offshoot length,
£, the offshoot period, D, affects the transition wave
motion. In order to accommodate D, Egs. @ and ,

respectively, are modified as follows:

[1+nt Y 6 — kD) + ni+ ¢ (u)] = e =0,
k=—oc0

(11a)

> P k)i + ni+ 1 ()] = [P(23 k)t |0 = 0,
k=—o0

(11b)

where P(x;k) = (n + 1)*H(z — kD). Following the
same collective coordinate approach, we determine the
short- and long-offshoot ROMs for the periodic structure
[SI]. Because Egs. (6) and pertain to isolated
offshoots, their periodic extensions [i.e., Eqs. (11])] and
the corresponding ROMs assume D sufficiently large to
approximate this condition, i.e., D > X [SI].

I1l. 2D HIERARCHICAL METAMATERIAL

We also study the dynamics of transition waves
propagating in 2D lattices formed from identical conduits
of length, d = a(N — 1), where N is the number



of constituent bi-stable elements. While myriad
(quasi-)crystalline lattices may be devised, the periodic
square and hexagonal lattices (Fig. [3p,b) are amenable
to analysis via only slight modification of Eqgs. (L1).
Nevertheless, the dynamics observed in the simple square
and hexagonal lattices extend qualitatively to more
complex networks of 4- and 6-fold rotational symmetry
[ST]. The study proceeds along two tracks: (i) plane waves
and (ii) domain growth from an initial nucleus.

A. Analysis: Propagation of Plane Waves

From the parent 2D lattice, we can isolate a 1D
hierarchical structure whose dynamics are representative
of plane wave propagation along the lattice symmetry
directions. = Through these isolated structures, the
previous 1D analysis can be extended to the 2D setting.

In particular, for horizontal plane wave propagation
in the square lattice, we envision the vertical conduits
bisected by horizontal axes (Fig. 1) For even N,
the two elements on either side of an axis displace
synchronously and, thus, the interaction force between
them is zero. Accordingly, we isolate the 1D structure
situated between two adjacent bisecting axes, which
resembles the hierarchical system in Fig. [Th; therefore,
for d > X which corresponds to £ > X and D = d, the
ROM developed from Eq. is expected to describe
transition waves propagating within the structure. As
the 2D system emerges from appending copies of the 1D
structure in the perpendicular direction, the results of
the analysis are expected to be pertinent to horizontal
plane wave propagation. Similarly, for diagonal plane
wave propagation, we envision the junctions bisected by
diagonal axes (Fig. [Bp.ii). In isolating the 1D structure
between adjacent axes, the bisected junction behaves as
a defect element with local properties half that of the
background. Consequently, the ROM developed from Eq.
, with nf replaced by —1/2, is expected to apply.

To isolate 1D hierarchical structures from the 2D
hexagonal lattice, we follow a similar procedure as above.
For horizontal plane wave propagation, we bisect the
vertical conduits and isolated the 1D structure between
two adjacent bisections, whose junctions are host to
n = 1 offshoot (Fig. [3p.i); thus, we expect the
relevant ROM to be that emerging from Eqgs. (11b]
with n = 1. For “diagonal” plane wave propagation, we
bisect the conduits linking A- and B-type junctions (Fig.
.ii). The bisecting axes evenly splits diagonal conduits
while leaving intact conduits which subtend consecutive
bisections. Therefore, the local properties of elements
in split conduits are effectively half those in subtending
conduits. The ROM for this unique scenario emerges

from:

(1 + Y Pla k)) [it + ni 42 (u)]

k=—oc0

-z

where P(z;k) = H(x — 2kD) — H[z — (2k + 1) D).

To validate our approach, we simulate the propagation
of a plane transition wave along the horizontal /diagonal
axes of the square and hexagonal lattices, and then
compare these results to those of the ROMs inspired
by the isolated 1D hierarchical structures (Figs. 7d).
The simulated discrete lattices (source models) have the
approximate dimensions, W x L = 35d x 35d, with
constituent chains of length, d = 15. Periodic boundary
conditions are applied along the edges perpendicular to
the propagation direction (i.e., the L dimension). A
right-propagating plane wave driven by a range of &
is initiated by prescribing (u, @) = (us2,0) to elements
at the left boundary (i.e., along the W dimension).
As the effective wavefront propagates in the either the
horizontal or diagonal directions, the path taken by
constituent transition waves within the lattice conduits is
less direct. The mean velocity is plotted in Figs. [3c,d is
calculated from effective wavefront (equiv., by projecting
the velocity of the constituent waves onto an axis parallel
to the horizontal/diagonal direction.).

In general, excellent agreement is observed in Figs.
[Be,d, validating the ROMs and, by extension, the
proposed method of extracting a 1D hierarchical
structure from a 2D parent lattice for the purpose
of analyzing plane transition wave propagation in the
parent lattice. In Fig. , the profile of vy, (§) as
determined by the ROM for horizontal propagation is
supported by the simulation results; however, the critical
¢ separating the propagating and non-propagating
regimes differs between the ROM and source model.
We attribute this to the enhanced stiffness of the
continuum model underlying the ROM compared to the
discrete system, exacting a higher energy penalty as the
wave traverses a junction, i.e., requiring a higher £ to
overcome.

These results are the first demonstration of
direction-dependent propagation for transition waves in
a 2D phase-transforming metamaterial. Interestingly,
as indicated by the intersection of horizontal and
diagonal results in Figs. [B,d, adjusting £ enables the
exchange of the favored propagation direction (i.e.,
that in which the propagating wave is least impeded
by the hierarchical structure). On one hand, compared
to effective propagation horizontal direction, the
hierarchical architecture establishes a diminished energy
barrier for constituent waves propagating in the lattice
conduits. On the other hand, compared to effective
propagation horizontal direction, the propagation of
constituent waves in the lattice conduits is less aligned

(12)
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FIG. 3. Plane Wave Propagation in 2D Hierarchical Lattices. Schematics of (a) square and (b) hexagonal lattices comprising
intersecting chains of bi-stable elements. The lattice are oriented for a transition wave propagating (shaded region with arrow)
along the designated horizontal and diagonal directions. 1D hierarchical structures are isolated between two bisecting axes.
(c,d) Comparison of numerical results for mean plane wave velocity as determined from the discrete 2D source model and the
ROMSs developed from the isolated structures. According to the ROMs, for £ > £., wave propagation is supported in both the
horizontal and diagonal directions; for £ = £, the propagation velocity is identical in both directions.

with the diagonal direction, diminishing the effective
propagation velocity. The exchange occurs as one of
these competing influences dominates the other.

B. Morphology of Closed Domains

In the following, we numerically investigate the
morphology of closed domains that evolve from a single,
centrally-located nucleating element within 2D lattices.
For the 2D system initially uniform in the meta-stable
phase, ug1, a small nucleus of the less energetic phase, ugs,
will trigger a phase transformation accommodated by the
propagation of transition waves forming the expanding
contour of a closed domain uniform in wug. Figure
illustrates three, &-dependent morphologies that the
nucleated domain may acquire as it evolves within
a square hierarchical lattice; indeed, any hierarchical
lattice with 4-fold rotation symmetry: an octagon and
square with one of two orientations with respect to
the host lattice.  Similarly, as exemplified by the
hexagonal hierarchical lattice in Fig. [dp, within a
hierarchical lattice of 6-fold rotation symmetry, the
domain morphology approximates either a dodecagon

or a hexagon with one of two orientations with respect
to the underlying lattice.  The effect of hierarchy
is evident in Figs. [fh,b, where d/A =~ 5/2 with
d = 15. Conversely, in structurally homogeneous
systems (or hierarchical systems with d/A — 0), the
wave velocity is (near-)independent of the propagation
direction; therefore, the domain acquires a circular
morphology (Fig. [ik).

Although the theoretical results and discussion of
earlier sections are most pertinent to the propagation
of transition waves along a single dimension, Figs.
[Bk,d, nevertheless, aid in justifying the morphology of
the closed domains in 2D hierarchical lattices. While
the simulations utilize a single (point-like) nucleating
element, the justifications are most straightforwardly
provided by considering the evolution of a circular
nucleus. For & < & < &, Figs. [Bk,d show that
plane transition waves propagate along the diagonal
axis at a greater velocity than along the horizontal
axis. Considering the outward normals to the contour
of the circular nucleus, as the system evolves, it may
be expected that the portion of the contour with
normals most aligned with the diagonal (horizontal)
axis correlates to the fastest (slowest) expanding region
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FIG. 4. Hierarchy and Domain Morphology. Simulation snapshots of the closed domain that evolves from a nucleus of the
low-energy phase. (a) Within a square hierarchical lattice, the nucleus grows into a domain with 4- or 8-fold rotational symmetry.
(b) Within a hexagonal hierarchical lattice, the nucleus becomes a domain with 6- or 12-fold rotational symmetry. (a,b) The
potential difference selects for the principal direction (horizontal or diagonal) along which transition wave propagation is favored,
yielding a domain morphology with the symmetry of the underlying lattice. If both propagation directions are equally-favored,
then the domain morphology develops a rotational symmetry twice that of the underlying lattice. (c) The nucleus initiated
within (i) a homogeneous system or (ii) a hierarchical lattice with d/A =~ 1/3 will develop into a circular domain.

of the nucleus. The difference in velocity deforms
the nucleus; however, no portion of the contour can
become concave since this would produce normals
directed along the diagonal and the wavefront would
quickly fill the concavity. Therefore, within the
square (hexagonal) lattice, the circular nucleus grows
into a domain with square (hexagonal) morphology

with symmetry axes aligned with those of the square
(hexagonal) lattice.  On the other hand, for £ >
&, Figs. PB,d now show the velocity to be greatest
along the horizontal axis. Therefore, similar reasoning
involving the outward normals to the contour of the
circular nucleus suggests that the nucleus, once again,
develops a square (hexagonal) morphology within a
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FIG. 5. Hierarchy and Domain Stability. For a sufficiently large potential difference, the low-energy domain will expand into
and overtake the meta-stable domain, yielding a system of homogeneous phase. Below a critical value of &, except for small
changes along the perimeter to balance forces at the junctions, an arbitrary initial phase distribution will not evolve in time.

square (hexagonal) lattice; although, the axes of the
domain are rotated by w/4 (w/6) with respect to the
underlying square (hexagonal) lattice. Finally, for £ ~ &,
Figs. [B¢,d indicate propagation of near-equal velocity
along the horizontal and diagonal axes. Applying our
earlier reasoning, we expect the circular nucleus to grow
into a domain with octagonal (dodecagonal) morphology
within the square (hexagonal) lattice. Apparently, by
changing &, it is possible to manipulate the morphology
of nucleated domain.

As mentioned above in the context of conventional
phase-transforming materials, the physical properties can
vary drastically between domains of different phase,
which may be exploited for applications. Although
the literature contains examples of metamaterials with
configuration-specific properties, only a few of these
(restricted to 1D architectures) allow multiple domains
to stably exist simultaneouslyl®238l. otherwise, the
excess free energy drives the system to a uniform
low-energy phase. The ability to stabilize 2D domains of
arbitrary morphology raises the prospect of a custom and
re-configurable 2D domain patterning which, may open
the door to functionalities and applications inherently
out of reach of 1D systems. Here, for the first time, we
demonstrate a stable 2D domain of complex morphology
utilizing a hierarchical 2D lattice with & < &, (Fig. .

In the SI, an impromptu waveguide is constructed from
a prescribed domain pattern.

IV. CONCLUDING REMARKS

In summary, we have introduced the concept
of  structural  hierarchy to  phase-transforming
metamaterials through 1D/2D networks of intersecting
chains of bi-stable elements and developed a framework
for investigating the consequences thereof for transition
wave propagation. For the purpose of analysis, the
hierarchical structure is interpreted as a material
heterogeneity in continuum approximations of discrete
source models, which are shown to be predictive of the
dynamic response. Physically, the hierarchical structure
generates an energy barrier that either impedes or, for
insufficient potential driving, halts the propagation.
Interestingly, an understanding of transition wave
propagation within 1D systems is shown to extend to 2D
periodic systems along the symmetry axes. In particular,
we are able to use the 1D results to justify the unusual
domain morphologies that uniquely develop within 2D
hierarchical systems from a smaller nucleus. Moreover, if
the potential driving is insufficient for propagation, then
any prescribed complex morphology is rendered stable,



which with configuration-specific physical properties
supports the notion of domain patterning for custom
performance in potential, e.g., soft matter applications.
Altogether, the results not only elucidate the influence of
hierarchical structure — a new design degree of freedom
— on the dynamics of phase-transforming metamaterials,
but also its potential utility.
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